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Abstract
We employ the fermionic and bosonic replicated nonlinear σ models to
treat Ginibre unitary, symplectic and orthogonal ensembles of non-Hermitian
random matrix Hamiltonians. Using the saddle point approach combined
with the Borel resummation procedure, we derive the exact large-N results for
microscopic density of states in all three ensembles. We also obtain tails of the
density of states as well as the two-point function for the unitary ensemble.

PACS numbers: 05.45+b, 73.23.Ps, 75.10.Nr

1. Introduction

In recent years, the non-Hermitian random matrix Hamiltonians have found a broad spectrum
of applications in physical problems [1]. Their applicability ranges from dynamics of vortex
lines [2] and gauge theory at high baryon density [3] to description of biological populations [4].
On the mathematical side, the study of non-Hermitian ensembles was pioneered by Ginibre [5],
who introduced the non-Hermitian counterparts of the Dyson ensembles and computed
correlation functions for the unitary ensemble. A few decades later Mehta extended his
results to the symplectic ensemble [6]. Feinberg and Zee [7] introduced the Hermitization
trick and derived a number of results going beyond Ginibre Gaussian ensembles. The field-
theoretical treatment [8] in the supersymmetric formulation [9] was introduced by Fyodorov,
Sommers and Khoruzhenko [10] for the unitary ensemble. Efetov [11, 12] has subsequently
developed the supersymmetric method for all three non-Hermitian ensembles. In this paper,
we take an alternative route of the field-theoretical treatment, namely the replica trick [13].
This method was recently proved to be capable of describing the correlation functions of the
Hermitian Dyson ensembles [14–18]. So far the validity of the replica approach has been
restricted to the asymptotic regions of the correlation functions only, while the supersymmetry
is exact everywhere. It has, however, an important advantage of being applicable to a much
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broader class of systems, e.g. interacting disordered systems [19] or Calogero–Sutherland
models [20].

Here we show that the replica strategy works for the Ginibre ensembles as well. Although
the treatment is philosophically similar to that for the Dyson ensembles, it requires considerable
technical modifications associated with the intrinsic chirality of the non-Hermitian symmetry
classes. In particular, the Riemannian symmetric manifolds which are target spaces of the
nonlinear σ model differ from the corresponding Hermitian counterparts. Rather, they are
subspaces of their chiral Hermitian counterparts, as may be anticipated upon Hermitization.
This necessitates the introduction of convenient parametrizations, calculation of the measure
and finally an appropriate analytical continuation. We also extend the method by performing
all order expansion around the saddle points. In the n → 0 limit the resulting series may be
summed up employing the Borel resummation procedure. As a result, we are able to obtain
formally exact results for the density of states for all three Ginibre ensembles.

The paper is organized as follows: in section 2 we collect analytic results known for
Ginibre ensembles, and preliminaries about the replica method. In section 3 we derive the
unitary σ model using the fermionic replica and obtain the corresponding density of states,
including the tails near the boundary of the spectrum support. Section 4 extends the unitary σ
model to calculation of the two-point function. In section 5 we treat the density of states for
the symplectic ensemble using the fermionic replica. In section 6 we treat the density of states
for the orthogonal ensembles using the bosonic replica. Finally, peculiarities of the method
and possible extensions are discussed in section 7.

2. Preliminaries

2.1. Non-Hermitian Gaussian ensembles

Throughout this paper, we adopt Mehta’s conventions and notations [6]. Ginibre ensembles
with β = 1 (orthogonal), β = 2 (unitary) or β = 4 (symplectic) are defined as ensembles of
N × N matrices H over one of the fields: R,C or H . Each entry of such matrices contains
β real components which are i.i.d. variables drawn from the Gaussian distribution [5]

dµ(H) = (απ)−βN 2/2 e− 1
α

Tr HH †
β∏
q=1

N∏
i,j=1

dH(q)

ij (α = 2, 1, 1 forβ = 1, 2, 4). (1)

For a real N × N matrix H (β = 1), the secular equation, det(z − H) = 0, has real
coefficients, so complex eigenvalues always appear in conjugate pairs. For a quaternion-real
N×N matrixH(β = 4), one can find a complex 2N×2N matrix representation (also denoted
as H for notational simplicity) satisfying

H̄ = JHJ−1 J =
[

0 11N
−11N 0

]
. (2)

It implies that det(z̄ − H) = det(z−H), and thus complex eigenvalues again appear in
conjugate pairs.

Spectral correlation functions are defined as

Rp(z1, . . . , zp) = 〈
Tr δ2(z1 −H) · · ·Tr δ2(zp −H)〉 (3)

where 〈· · ·〉 denotes averaging with dµ(H). The macroscopic density of states (DoS) of H
is uniform within a circle of radius

√
N (β = 1, 2) or

√
2N (β = 4). Below we collect

known results for the microscopic correlation functions computed by the (skew-)orthogonal
polynomial method [5, 6] and by the supersymmetry method [11].
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Unitary ensemble [5, 6]4

πR1(z) = e−|z|2

�(N)

∫ ∞

0
dλ e−λ(λ + |z|2)N−1 (exact) (4a)

πR1(z) =
{

1 (|z| � √
N)

0 (|z| � √
N)

(4b)

πR1(z) = 1 − e−2u2

2
√

2πu
(|z| =

√
N − u, 1 � u�

√
N) (4c)

π2R2(z, z
′) = 1 − e−|z−z′ |2 (|z|, |z′| �

√
N). (4d)

Symplectic ensemble [6, 11] (z = x + iy, |z| � √
N)

πR1(z) = 2y2
∫ 1

0

dλ√
1 − λ e−2y2λ. (5)

Orthogonal ensemble [11] (z = x + iy, |z| � √
N)

πR1(z) = 2y2
∫ ∞

0

dλ√
1 + λ

e−2y2λ +
√
πδ(y). (6)

2.2. Replica method

In the Hermitian case, one uses the identity

δ(x) = 1

π
Im

1

x − iε
= 1

π
Im

d

dx
log(x − iε)

= lim
n→0

1

πn
Im

d

dx
(x − iε)n

which in the matrix context takes the form [13]

Tr δ(x −H) = lim
n→0

1

πn
Im

d

dx
detn(x − iε −H). (7)

The two distinct versions n > 0 and n < 0 are called the fermionic and bosonic replicas,
respectively. The fermionic replicated generating functions (detn(x − H) averaged with
dµ(H)) of unitary [14], orthogonal, symplectic [15, 16] and chiral unitary [17] ensembles lead
to compact nonlinear σ models on U(2n)/U(n) × U(n), Sp(2n)/Sp(n) × Sp(n), O(2n)/
O(n) × O(n) and U(2n), respectively, which are FF blocks of the Riemannian symmetric
superspaces of type AIII | AIII, BDI | CII, CII | BDI and A | A [21]. After appropriate
parametrization of these symmetric spaces one obtains n-fold compact integrals, which may
be evaluated in the saddle point approximation. By collecting contributions from dominant as
well as subdominant saddle points, one obtains the asymptotic expressions for the correlation
functions. Bosonic replica has been successfully applied to the chiral unitary ensemble [17],
see also [22].

In the non-Hermitian case, one may employ the identity

δ2(z) = 1

π
∂z∂z̄ log(zz̄) = lim

n→0

1

πn
∂z∂z̄(zz̄)

n

4 The upper bound estimated in equation (15.1.35) of [6], which was shown to converge to e−u2
/(2

√
πu), is not

saturated in a region of the parameter 1 � u2 � N . Applying the saddle point approximation as employed in
section 3.2, to the integral representation of the finite-N result (4a), one obtains the correct asymptotics (4c).
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which in our context takes the form

Tr δ2(z −H) = lim
n→0

1

πn
∂z∂z̄detn(z−H)detn(z̄−H †). (8)

This form resembles the generating function for a block off-diagonal (chiral) matrix obtained
upon Hermitization [23]. The difference is that the spectral parameter enters off-diagonally
rather than diagonally as in the chiral case. This distinction however does not affect the
resulting saddle point manifolds, which are determined at infinitesimal spectral parameters.
Therefore, according to Zirnbauer’s celebrated result [21], the saddle point manifolds
are expected to be (subspaces of) U(2n),U(2n)/O(2n),U(2n)/Sp(n) (for the fermionic
replica) or GL(2n,C)/U(2n),U∗(2n)/Sp(n),GL(2n,R)/O(2n) (for the bosonic replica)
for β = 2, 4, 1, respectively, which are FF and BB blocks of the Riemannian symmetric
superspaces of type A | A, AII | AI and AI | AII.

Our aim is to obtain the DoS and the two-point function (cf equations (4)–(6)) including
exponential terms, using the replica strategy. We employ either the fermionic or bosonic
replica, whichever is suitable for the actual computation.

3. Ginibre unitary ensemble: density of states

Consider the fermionic replicated generating function (positive moment of the characteristic
polynomial) of the Ginibre unitary ensemble defined as

Zn(z, z̄) =
∫

CN×N
dH e−TrHH †

detn(z−H) detn(z̄ −H †) (9)

where dH = π−N 2 ∏N
i,j d2Hij . We denote ‘colour’ indices by i, j = 1, . . . , N and ‘flavour’

indices by a, b = 1, . . . , n. In the standard way, one introduces mutually independent
Grassmann variables ψia, ψ̄

i
a, χ

i
a, χ̄

i
a , and rewrites the generating function in terms of an

auxiliary matrixQab (a well-known re-expression of the chiral unitary ensemble with flavour
and colour indices interchanged [24, 25]):

Zn(z, z̄) =
∫

CN×N
dH

∫
dψ̄ dψ dχ̄ dχ exp

(−HijH̄ ij

− ψ̄ia(zδij −Hij )ψja − χ̄ ja (z̄δji − H̄ ij )χia
)

=
∫

dψ̄ dψ dχ̄ dχ exp
(
ψ̄ iaψ

j
a χ̄

j

b χ
i
b − zψ̄iaψia − z̄χ̄ iaχ ia

)

=
∫

Cn×n
dQ e− Tr QQ†

∫
dψ̄ dψ dχ̄ dχ exp

(
−[ψ̄ iaχ̄ ia]

[
zδab −Qab
Q

†
ab z̄δab

] [
ψib
χib

])

=
∫

Cn×n
dQ e− Tr QQ†

detN
[
z −Q
Q† z̄

]

=
∫

Cn×n
dQ e− Tr QQ†

detN(zz̄ +QQ†). (10)

Here dψ = ∏
a,i dψia and so forth, and dQ = π−n2 ∏n

a,b d2Qab. A complex matrix Q ∈
Cn×n can be uniquely written as (singular value decomposition)

Q = U*V U ∈ U(n)/U(1)n V ∈ U(n)
* = diag

(
λ

1/2
a

)
λa � 0

(11)
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and a Euclidean measure dQ on Cn×n is related to normalized Haar measures dU on
U(n)/U(1)n and dV on U(n) by

dQ = dU dV,(λ)2
n∏
a=1

dλa ,(λ) =
n∏
a>b

(λa − λb). (12)

As the integrand does not depend on U and V , Zn(z, z̄) is written as an n-fold integral (even
for finite N),

Zn(z, z̄) =
∫ ∞

0

n∏
a=1

(
dλa e−λa (λa + |z|2)N ),(λ)2 (13)

up to an irrelevant constant factor that approaches unity in the replica limit. Note the striking
resemblance between DoS (4a) and the replica generating function (13) even at finite N. This
raises the question of whether the replica method may be applicable beyond the asymptotic
analysis. We come back to this issue in section 7.

3.1. DoS in the bulk

Now we take the large-N limit. For |z| < √
N , the saddle point equation

1 − N

λ + |z|2 = 0 (14)

has a solution λ = N − |z|2. Therefore

Zn(z, z̄) = e−n(N−|z|2) (15)

up to an irrelevant constant given by the Selberg integral [6], which goes to unity as n → 0,
andO(n2) terms. On the other hand, for |z| > √

N , the integral is dominated by the end point
λ = 0:

Zn(z, z̄) = |z|2nN. (16)

Using relation (8), one obtains for the DoS

πR1(z) = lim
n→0

1

n
∂z∂z̄Zn(z, z̄) =

{
1 |z| < √

N

0 |z| > √
N
. (17)

Therefore N complex eigenvalues are uniformly distributed within a circle of radius
√
N , in

agreement with the exact result (4b).

3.2. DoS at the edge

If |z| is close to the edge of the circle, such that |z| = √
N − u, where 1 � u � √

N ,
one may work out corrections to the uniform DoS. In this case, both the saddle point at
λa = N − |z|2 � 2

√
Nu and the end point λa = 0 contribute to the partition function.

Summing up all the contributions, one finds

Zn(z, z̄) = e−n(N−|z|2)
n∑
p=0

(
n

p

)
(−)p(2

√
Nu)2p(n−p) e−2pu2

×
∫ ∞

0

p∏
a=1

(
dλa e− 2u√

N
λa
)
,(λ)2 ×

∫ ∞

−∞

n−p∏
b=1

(
dλb e− λ2

b
2N

)
,(λ)2. (18)
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Employing Selberg integrals and neglecting constant factors which go to unity in the n → 0
limit, one obtains

Zn(z, z̄) = e−n(N−|z|2)
n∑
p=0

(−)p e−2pu2
(2u)2p(n−p)−p

2
(2π)

n−p
2 Dpn (19)

where

Dpn ≡
p∏
a=1

�(a)2

�(n− a + 1)
. (20)

Since Dpn = 0 for p > n, one may extend the summation over p to infinity in equation (19).
We then perform the analytic continuation n → 0. To this end, we note that Dpn = O(np) in
the limit n → 0. Therefore, only the terms with p = 0 and p = 1 contribute to the partition
function in the small-n limit. As a result, one finds

Zn(z, z̄) = e−n(N−|z|2)
(

1 − n e−2u2

√
2π(2u)3

)
. (21)

Employing finally equation (8) one obtains for the DoS close to the edge of the spectrum
support

πR1(z) = lim
n→0

1

n
∂z∂z̄Zn(z, z̄)

= 1 − e−2u2

2
√

2πu
+O

(
e−2u2

u3

)
. (22)

This asymptotics agrees with the exact result (4c) within the validity of our approximation
1 � u2(�N). The tail of the DoS outside the circle, |z| > √

N , cannot be obtained in the
fermionic replica. Indeed, in this case the saddle point is situated at negative λ and the contour
of integration cannot be deformed to pass through it. As a result, the integrals are dominated
by the end point λ = 0, which leads to the zero DoS for |z| > √

N . It is possible that the
bosonic replica σ model may be capable of producing these tails (cf [26]).

4. Ginibre unitary ensemble: two-level correlation

Consider the fermionic replicated generating function with two spectral parameters,

Zn(z1, z̄1; z2, z̄2) =
∫

CN×N
dH e−TrHH †

detn(z1 −H) detn(z̄1 −H †)

× detn(z2 −H) detn(z̄2 −H †). (23)

Introducing the enlarged flavour indices A,B = 1, . . . , 2n and a 2n× 2n matrix Z,

Z =
[
z111n 0

0 z211n

]

one rewrites the generating function in terms of the auxiliary matrix QAB as in the previous
section,

Zn(z1, z̄1; z2, z̄2) =
∫

C2n×2n
dQ e−TrQQ†

detN
[
Z −Q
Q† Z̄

]
(24)

with dQ = π−4n2 ∏2n
A,B d2QAB .
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Hereafter, we concentrate on the centre of the circle |z1|, |z2| � √
N . At z1 = z2 = 0,

the large-N saddle point equation

Q† − NQ†(QQ†)−1 = 0 (25)

is solved by

Q =
√
NU U ∈ U(2n). (26)

For z1, z2 finite and of order unity, one can write for such Q

det

[
Z −Q
Q† Z̄

]
� exp

(
− 1

2N
Tr

[
0 −U−1Z̄

UZ 0

]
2

)

= exp

(
1

N

(
2n |z|2 +

∣∣∣ω
2

∣∣∣2 TrUsU−1s

))
(27)

where

z = z1 + z2

2
ω = z1 − z2 s =

[
11n 0
0 −11n

]
.

Therefore,

Zn(z1, z̄1; z2, z̄2) = e−2n(N−|z|2)
∫
U(2n)

dU exp

( |ω|2
4

TrUsU−1s

)
(28)

up to an irrelevant constant factor that approaches unity in the replica limit. Here dU is a
Haar measure on U(2n). The above integrand is invariant under

U → U

[
u 0
0 u′

]
u, u′ ∈ U(n)

so the saddle point manifold shrinks to U(2n)/U(n)× U(n). Adopting the parametrization
of this coset manifold employed by Verbaarschot and Zirnbauer [27],

UsU−1 =
[
u 0
0 v

] [
cos Θ sin Θ eiΦ

sin Θ e−iΦ −cosΘ

][
u−1 0

0 v−1

]

Θ = diag(θa) Φ = diag(φa) u, v ∈ U(n)/U(1)n
(29)

dU = du dv
n∏
a=1

dφa

n∏
a=1

d cos θa,(cos θ)2 (30)

and substituting

TrUsU−1s = 2Tr cos Θ = 2
n∑
a=1

cos θa (31)

one obtains

Zn(z1, z̄1; z2, z̄2) = e−2n(N−|z|2)
∫ 1

−1

n∏
a=1

(
dλa e

|ω|2
2 λa

)
,(λ)2 (32)

where λa = cos θa.
The replica limit of the above n-fold integral has been discussed extensively by many

authors [16, 18, 20, 27] (see also [28] for its asymptotic analysis). Integral (28) over
Grassmannian manifold U(2n)/U(n) × U(n) with a height function TrUsU−1s satisfies
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the criteria of the Duistermaat–Heckman localization theorem [29, 30] and thus the saddle
point method applied to equation (28) is exact for an arbitrary value of |ω|2. For positive
large t = |ω|2/2, integral (32) may be ‘approximated’ by contributions from the end points
λa = ±1, ∫ 1

−1

n∏
a=1

(
dλa etλa

)
,(λ)2 =

n∑
p=0

(−)p (Fpn (1))2 e(n−2p)t

(2t)(n−p)2+p2 (33)

where

Fpn (k) ≡
(
n

p

) p∏
a=1

�(1 + a/k)

�(1 + (n− a + 1)/k)
(34)

for p > 0 and F 0
n (k) = 1. One may extend summation over p to infinity, since the

binomial coefficient
(
n

p

) ≡ 0 for p > n. After this one may perform analytical continuation,
employing the small-n limit,

Fpn (k) = n(−1)p+1

p

p∏
a=1

�(1 + a/k)

�(1 − (a − 1)/k)
+O(n2). (35)

Accordingly the integral reads, for small n,∫ 1

−1

n∏
a=1

(
dλa etλa

)
,(λ)2 � ent

(2t)n2 − n2 e(n−2)t

(2t)n2−2n+2
. (36)

Using this formula, one obtains

Zn(z1, z̄1; z2, z̄2) � e−2n(N−|z|2)
(

en|ω|2/2

|ω|2n2 − n2 e(n−2)|ω|2/2

|ω|2(n2−2n+2)

)
. (37)

The two-point function is given by

π2R2(z1, z2) = lim
n→0

1

n2
∂z1∂z̄1∂z2∂z̄2Zn(z1, z̄1; z2, z̄2)

= 1 − e−|z1−z2|2 +O

(
e−|z1−z2|2

|z1 − z2|2
)
. (38)

This agrees with the exact result (4d) within the validity of approximation 1 � |z1 −
z2|2 (�N). The disconnected part 1 = π2R1(z1)R1(z2) is given by the replica symmetric
saddle point p = 0, whereas the connected part −e−|z1−z2 |2 is given by the replica
nonsymmetric saddle point, p = 1. In the latter case, the (n− 1)-fold integral around λ = 1
and a one-fold integral around λ = −1 ‘interact’ through the Vandermonde determinant.
Taking this interaction into account in the perturbative manner, one finds that all terms
proportional to e−|z1−z2|2/|z1 − z2|2k (k � 1) are cancelled. We have checked this statement
explicitly to the order k = 1. In general, it is a manifestation of the Duistermaat–Heckman
localization theorem [30].

5. Ginibre symplectic ensemble

For a 2N×2N complex matrix representation of anN×N quaternion-realmatrix H, constraint
(2) may be solved by

H =
[
S T

−T̄ S̄

]
S, T ∈ CN×N. (39)
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The fermionic replicated generating function of the Ginibre symplectic ensemble thus reads

Zn(z, z̄) =
∫

HN×N
dH e− 1

2 TrHH †
detn(z −H) detn(z̄ −H)

=
∫

CN×N
dS dT e−Tr SS†−Tr T T †

detn
(
z−

[
S T

−T̄ S̄

])
detn

(
z̄−

[
S T

−T̄ S̄

])
(40)

where dH = dS dT = π−2N 2 ∏N
i,j d2Sij d2T ij . Once again we introduce enlarged flavour

indicesA,B = 1, . . . , 2n and express the generating function in terms of the auxiliary matrix
QAB ,

Zn(z, z̄) =
∫

CN×N
dS dT

∫
dψ̄ dψ dχ̄ dχ exp

(
−Sij S̄ij − T ij T̄ ij

− [
ψ̄ iAχ̄

i
A

]([δij 0
0 δij

]
ZAB −

[
Sij T ij

−T̄ ij S̄ij

]
δAB

)[
ψ
j

B

χ
j

B

])

=
∫

dψ̄ dψ dχ̄ dχ exp
(− ψ̄ iAZABψiB − χ̄ iAZABχiB

−ψiAψ̄jAχ̄jBχiB + χiAψ̄
j

Aχ̄
j

Bψ
i
B

)
=
∫
M

dQ
∫

dψ̄ dψ dχ̄ dχ exp

(
−1

2
QABQ̄AB +

1

2
QAB

(
ψ̄ iAχ̄

i
B + ψ̄ iB χ̄

i
A

)
+

1

2
Q̄BA

(
χ
j

Aψ
j

B + χjBψ
j

A

)− ψ̄ iAZABψiB − χ̄ iAZABχiB
)

=
∫
M

dQ e− 1
2 TrQQ†

∫
dψ̄ dψ dχ̄ dχ exp

(
−[ψ̄ iAχiA]

[
QAB −ZAB
ZAB Q

†
AB

] [
χ̄ iB
ψiB

])

=
∫
M

dQ e− 1
2 TrQQ†

detN
[
Q −Z
Z Q†

]
(41)

where z = x + iy,Z = x112n+iys. Here dQ = (2π)−2n2−n∏2n
A�B d2QAB , and the integration

domain M is a set of 2n × 2n complex symmetric matrices, because its antisymmetric
part decouples from the fermionic bilinear. A similar procedure was adopted for the chiral
symplectic ensemble [31].

Hereafter, we concentrate on the centre of the circle |z| � √
2N . The large-N saddle

point equation
1
2Q

† − NQ†(QQ†)−1 = 0 (42)

is solved by

Q =
√

2NU U ∈ U(2n). (43)

For z finite and of order unity, one can write for such Q

det

[
Q −Z
Z Q†

]
� exp

(
− 1

4N
Tr
[

0 −U−1Z

UZ 0

]2
)

= exp

(
1

N

(
nx2 − y2

2
Tr UsU−1s

))
. (44)

Therefore,

Zn(z, z̄) = e−n(2N−x2)

∫
U(2n)
U=UT

dU exp

(
−y

2

2
TrUsU−1s

)
(45)
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up to an irrelevant constant factor that approaches unity in the replica limit. Here dU is a
Haar measure on a group quotient U(2n)/O(2n) that is isomorphic to the space of 2n × 2n
unitary symmetric matrices through Cartan embedding g �→ U = ggT . Since the integrand is
invariant under

U →
[
u 0
0 u′

]
U

[
uT 0
0 u′T

]
u, u′ ∈ U(n) (46)

the saddle point manifold shrinks down to the intersection of U(2n)/O(2n) and
U(2n)/U(n)× U(n). Following Zirnbauer and Haldane [32], one can parametrize the matrix
U and the measure dU as

U =
[
u 0
0 v

] [
cos Θ i sin Θ
i sin Θ cos Θ

] [
uT 0
0 vT

]
Θ = diag(θa) u, v ∈ U(n) (47)

dU = du dv
n∏
a=1

d sin θa|,(cos2 θ)|. (48)

Computation of the above Jacobian is detailed in appendix A. By substituting

TrUsU−1s = 4
n∑
a=1

cos2 θa − 2n (49)

we obtain the generating function in the form of the n-fold integral

Zn(z, z̄) = e−n(2N−|z|2)
∫ 1

0

n∏
a=1

(
dλa√

1 − λa
e−2y2λa

)
|,(λ)| (50)

where λa = cos2 θa. Again we have encountered a striking resemblance between DoS (5) and
the generating function (50).

For y2 � 1 this integral is dominated by vicinities of the two end points. By considering
t ≡ 2y2 to have a negative imaginary part (possibly infinitesimal), one may deform the
integration contour to the upper half plane as [0, 1] → [0, i∞) + (1 + i∞, 1]. Employing
Selberg integrals, one may evaluate all the contributions with p integrals along [1, 1 + i∞)
taken in the vicinity of λ = 1, whereas the remaining n − p integrals along [0, i∞) coming
from the vicinity of λ = 0. Whenever the end point λa = 0 is adopted for some a, one may
safely expand (1 − λa)−1/2 in λa , while it ought to be treated exactly when the other end point
λa = 1 is chosen. Meanwhile we approximate (1 − λa)−1/2 � 1 for the former case and find

In(t) =
∫ 1

0

n∏
a=1

(
dλa√

1 − λa
e−tλa

)
|,(λ)| �

n∑
p=0

(
Fpn (2)

)2
�
(

1+n−p
2

)
�
(

1
2

) (−1)
p2

2 e−pt

t
(n−p)(n−p+1)

2 + p
2

2

. (51)

As in previous sections, one may extend summation over p to infinity and perform analytical
continuation, employing the small-n limit (35). Only p = 0 and p = 1 terms contribute in
the replica limit n→ 0, since p � 2 terms are of the orderO(n2). As a result,

In(t) � t−n/2 + n
i
√
π

2
t−1/2 e−t . (52)

In order to obtain perturbative (i.e. powers of 1/t) corrections, one expands the (1 − λa)−1/2

factor in powers of λa for the replica-symmetric (p = 0) term,∫ i∞

0

n∏
a=1

(
dλa e−tλa ) |,(λ)| n∏

b=1

(1 − λb)−1/2 =
∫ i∞

0

n∏
a=1

(
dλa e−tλa ) |,(λ)| exp

( ∞∑
k=1

ωk

2k

)

(53)
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where ωk ≡ ∑n
a=1 λ

k
a are elementary symmetric polynomials. In appendix B we prove by

loop equations [33] that the RHS of equation (53) is equal to∫ i∞

0

n∏
a=1

(
dλa e−tλa ) |,(λ)| exp

( ∞∑
k=1

ωk1

2k

)
=
∫ i∞

0

n∏
a=1

(
dλa e−tλa ) |,(λ)|

(
1 −

n∑
b=1

λb

)−1/2

= (1 + ∂t )−1/2
∫ i∞

0

n∏
a=1

(
dλa e−tλa ) |,(λ)| (54)

plus terms of orderO(n2). Here (1 + ∂t )−1/2 stands for a formal series

(1 + ∂t )−1/2 =
∞∑
k=0

(2k − 1)!!

(−2)kk!

dk

dtk
. (55)

Accordingly, the generating function reads

Zn(z, z̄) = e−n(2N−|z|2)In(2y2)

In(t) = (1 + ∂t )−1/2t−n/2 + n
i
√
π

2
t−1/2 e−t .

(56)

The DoS is then given by

πR1(z) = lim
n→0

1

n
∂z∂z̄Zn(z, z̄)

= 1 − 1
2 {∂t , t}∂t (1 + ∂t )−1/2 log t + i

√
πt e−t (57)

t = 2y2, up to terms of orderO(t−1/2 e−t ). On the other hand, one can evaluate the asymptotic
expansion of the exact result (5) for Re y2 � 1 and Im y2 < 0 by using the same saddle point
method (it is formally equivalent to the calculation given above for n = 1),

πR1(z) = t
(∫ i∞

0

dλ√
1 − λ e−tλ − e−t

∫ i∞

0

dλ′
√−λ′ e−tλ′

)
= t (1 + ∂t )−1/2t−1 + i

√
πt e−t . (58)

One may confirm the equality of equations (57) and (58) either by using a canonical
commutation relation [∂t , t] = 1 to bring, e.g., all ts to the right of ∂ts, or by explicit
substitution of equation (55) to derive an identical asymptotic series

πR1(z) =
∞∑
k=0

(2k − 1)!!

(2y)2k
+ i

√
2πy e−2y2

. (59)

The formal Borel resummation of the series, equation (59), leads to the exact result for the
DoS, equation (5). Therefore, our fermionic replica method gives correctly all orders of
perturbative terms as well as the nonperturbative term of the DoS. Although the imaginary
terms ±i

√
2πy e−2y2

are artefacts of locating y2 in the positive side of the lower or upper half
plane and are obviously absent for real positive y2 (i.e. the positive real axis is the Stokes line
for the asymptotic expansions), it is their presence and coincidence that enables us to identify
the two expressions: (50) with a Laplacian applied and (5), viewed as complex functions of y2.

6. Ginibre orthogonal ensemble

For a reason that will be mentioned below, we consider the bosonic replicated generating
function (negative moment of the characteristic polynomial) for the case of Ginibre orthogonal
ensemble:

Z−n(z, z̄) =
∫

RN×N
dH e− 1

2 TrHHT

det−n(z−H)det−n(z̄ −H) (60)
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dH = (2π)−N
2 ∏N

i,j dHij . Again we introduce enlarged flavour indices A,B = 1, . . . , 2n
and a 2n × 2n matrix Z. To calculate a negative power of determinant (60) with the help of
commuting variables φ̄, φ, one has to ensure convergence by choosing Im z > 0 and inserting
a matrix

√
s defined as [34]

√
s =

[
11n 0
0 i11n

]
as a result

Z−n(z, z̄) =
∫

RN×N
dH

∫
C2n×N

dφ̄ dφ exp

(
−1

2
HijH ij + iφ̄iA

√
sAB

(
ZBCδ

ij

− δBCH ij
)√
sCDφ

j

D

)

=
∫

C2n×N
dφ̄ dφ exp

(
−1

2
φ̄iAsABφ

j

Bφ̄
i
CsCDφ

j

D + iφ̄iA
√
sABZBC

√
sCDφ

i
D

)

=
∫
M

dQ dQ̃ e− 1
2 TrQQ̃

∫
C2n×N

dφ̄ dφ

× exp

(
i

2

[
φ̄iAφ

i
A

]√
sAB

[
QBC ZBC

ZBC Q̃BC

]√
sCD

[
φ̄iD
φiD

])

=
∫
M

dQ dQ̃ e− 1
2 TrQQ̃ det−

N
2

[
Q Z

Z Q̃

]
. (61)

Here dφ̄ dφ = (2π)−2Nn∏
A,i d2φiA, dQ dQ̃ = (2π)−2n2−n∏2n

A�B d2QAB d2Q̃AB , and the
integration domain M is a set of pairs of 2n×2n complex symmetric matrices (Q, Q̃) that are
mutually Hermitian conjugated, Q̃ = Q†. The restriction to symmetric matrices is because
their antisymmetric parts decouple from the bosonic bilinears.

Hereafter, we concentrate on the centre of the circle, |z| � √
N . The large-N saddle point

equations
1

2
Q̃ +

N

2
Q̃(QQ̃)−1 = 0

1

2
Q +

N

2
(QQ̃)−1Q = 0 (62)

imply

QQ̃ = −N112n. (63)

Clearly, this saddle point manifold lies outside M, forQQ̃ would have to be positive definite.
For this saddle point to be admissible, one must deform the original integration domain
M = {Q+

AB ∈ R,Q−
AB ∈ iR},Q± ≡ (Q± Q̃)/2, into M̃ = {Q+

AB ∈ R,Q−
AB ∈ CAB }, where

the contour CAB is shown in figure 1.
The width of the deformed section of the contour scales as 1/

√
N . Therefore, as long as

y � 1/
√
N → 0, the poles of det−N/2

[
Q Z

Z Q̃

]
are away from the deformed contour. Then the

saddle point equations can be solved by

Q =
√
NU Q̃ = −

√
NU−1 U ∈ GL(2n,R) U = UT . (64)

For z small and finite of order unity, one can write for such Q and Q̃

det

[
Q Z

Z Q̃

]
� exp

(
− 1

2N
Tr

[
0 U−1Z

−UZ 0

]2
)

= exp

(
1

N
(2nx2 − y2 Tr UsU−1s)

)
(65)

where z = x + iy,Z = x112n + iys.
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CAB

Figure 1. Schematic view of the integration contours in the complex Q−
AB plane. The original

contour (imaginary axis) can be deformed to CAB that passes through the saddle point (•) without
encircling the poles (◦) of the determinant, each of which appears to the left of the saddle point
and symmetrically in four quadrants.

After having deformed the contour of the integration over (Q, Q̃), one must re-ensure
convergence of the φ integrals in equation (61) by keeping the real part of the quadratic form

i

2
[φ̄φ]

√
s

[
Q Z

Z Q̃

]√
s

[
φ̄

φ

]
= −y

2n∑
A=1

|φA|2 + ix
n∑
a=1

(|φa|2 − |φa+n|2
)

+ [Reφ Imφ]
√
s

[
iQ+ Q−

Q− −iQ+

]√
s

[
Reφ
Imφ

]
(66)

to be negative definite. A sufficient condition is

(
√
sQ+√s)AB i(

√
sQ−√

s)AB ∈ R ⇔ sQ±s = ±Q± ⇔ Qs = sQ̃. (67)

This condition is actually necessary for the real part of the quadratic form to be negative definite
for arbitrarily small y > 0. At the saddle point (64), it implies a constraint UsUs = −11.
Therefore,

Z−n(z, z̄) = en(N−x2)

∫
D

dU exp

(
y2

2
Tr UsU−1s

)
(68)

D = {U ∈ GL(2n,R) | U = UT , (Us)2 = −11} (69)

up to an irrelevant constant factor that approaches unity in the replica limit. Here dU is
a Haar measure on the symmetric space of symmetric GL(2n,R) matrices, consisting of
2n + 1 disconnected components with 2n− k positive and k negative eigenvalues. The group
quotient GL(2n,R)/O(2n), which is the saddle point manifold of the bosonic replicated σ
model for the chiral Gaussian orthogonal ensemble, is isomorphic to the k = 0 component
by Cartan embedding g �→ U = ggT , but the component used here as the integration domain
D is a subspace of the k = n component. This difference between non-Hermitian and chiral
Hermitian ensembles is not surprising, because the symmetry breaking parameter z plays a
critical role as a regularization parameter, either in the bosonic replica method or in the bosonic
part of the supersymmetry method in general.
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Equation (68) is invariant under

U →
[
u 0
0 u′

]
U

[
uT 0
0 u′T

]
u, u′ ∈ O(n) (70)

so the saddle point manifold shrinks to the intersection of D and GL(2n,R)/O(n) × O(n).
A generic solution to constraint (69) is given by

U =
[
u 0
0 v

] [
sinh Θ cosh Θ
cosh Θ sinh Θ

] [
uT 0
0 vT

]
Θ = diag(θa) u, v ∈ O(n). (71)

Comparing equation (71) with (47), the Haar measure dU in terms of this parametrization is
formally obtained from equation (48) by a replacement Θ → π/2 − iΘ. Accordingly,

dU = du dv
n∏
a=1

d cosh θa|,(sinh2 θ)|. (72)

By substituting

Tr UsU−1s = −TrU 2 = −4
n∑
a=1

sinh2 θa − 2n (73)

one finally obtains

Z−n(z, z̄) = en(N−|z|2)
∫ ∞

0

n∏
a=1

(
dλa√
1 + λa

e−2y2λa

)
|,(λ)| (74)

where λa = sinh2 θa. Note that an identical expression also follows from the case with
y = Im z < 0. Once again we have encountered the resemblance between the DoS (6) and
the generating function (74).

For y2 � 1/N this integral is dominated by the vicinity of the end point λa = 0. By
temporarily approximating (1 + λa)−1/2 � 1, one obtains

Z−n(z, z̄) � en(N−|z|2)t−n/2 t = 2y2 > 0. (75)

In order to obtain the perturbative corrections in 1/t , one expands the (1 + λa)−1/2 factor in
powers of λa as in section 5. Accordingly, the generating function reads

Z−n(z, z̄) = en(N−|z|2)(1 − ∂t )−1/2t−n/2. (76)

The DoS is then given by

πR1(z) = lim
n→0

1

−n∂z∂z̄Z−n(z, z̄)

= 1 + 1
2 {∂t , t}∂t (1 − ∂t )−1/2 log t . (77)

On the other hand, one can evaluate the asymptotic expansion of the smooth part of the exact
result (6) for Re y2 � 1 (this calculation is formally equivalent to the above given one for
n = 1),

πR1(z) = t (1 − ∂t )−1/2t−1 (t > 0). (78)

One can confirm the equality of equations (77) and (78) either by using [∂t , t] = 1 or by
explicitly deriving an identical asymptotic series

πR1(z) =
∞∑
k=0

(−1)k(2k − 1)!!

(2y)2k
. (79)

The formal Borel resummation of this series leads to the smooth part of the exact result (6).
The δ function peak of the DoS localized at y = 0 cannot directly be captured by our bosonic
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replica treatment that requires a finite imaginary part of z5. However, it can be restored from
the Borel-reconstructed smooth part through a normalization sum rule∫ ∞

−∞
(πR1(y)− 1) dy = 0 (80)

with a correct coefficient
√
π . Therefore, the bosonic replica method correctly gives all orders

of the perturbative terms as well as the absence of exponentially decaying terms (and the
Stokes line at the positive real y2 axis), and indirectly the δ function term of the DoS.

Finally, we comment on the fermionic replica treatment of the orthogonal ensemble.
Following the same steps as in section 5, one may obtain equation (45) with the integration
domain being 2n×2n antisymmetric unitary matrices, which is isomorphic to a group quotient
U(2n)/Sp(n) by Cartan embedding g �→ U = gJgT (accompanied by a trivial change
2N → N). At present, we are not aware of an appropriate parametrization, such as equations
(47) or (71), of the intersection of this coset and U(2n)/U(n) × U(n). Consequently, these
generating functions are not available in the form of n-fold integrals as in equations (13),
(32), (50) and (74) that are suitable for the asymptotic analyses. This difficulty also arises
in the bosonic replica treatment of the symplectic ensemble, whose saddle point manifold is
an intersection of U∗(2n)/Sp(n) and U∗(2n)/U∗(n) × U∗(n). It is currently not clear to us
whether this difficulty is merely a technical obstacle or has an essential reason behind it.

7. Discussions

We have derived the fermionic or bosonic replicated nonlinear σ models for Ginibre unitary,
symplectic and orthogonal ensembles. The corresponding symmetric manifolds are subspaces
of U(2n),U(2n)/O(2n), and of a space adjacent to GL(2n,R)/O(2n) correspondingly, in
conformity with Zirnbauer’s classification. The proper parametrization of the manifolds and
subsequent integration of irrelevant degrees of freedom leave one with the n-fold compact
or noncompact angular integral. Performing the asymptotic analysis of such an integral,
one obtains sums over a variety of possible saddle points both replica symmetric and replica
nonsymmetric. After analytical continuation, n → 0, only a replica-symmetric contribution
and possibly a few nonsymmetric ones survive. The former are responsible for the perturbative
(polynomial in inverse large parameter), while the latter for the nonperturbative (essentially
singular) contributions to the correlation functions. For the DoS calculation, it is possible to
evaluate the infinite order perturbative expansions near these saddle points. One may also
show that the Borel resummation of such expansions after n → 0 limit leads to the exact
results valid for an arbitrary spectral parameter.

We recapitulate our findings for the non-Hermitian ensembles at hand. The bulk of the
DoS in the unitary case (constant) is fully given by the replica-symmetric saddle point. The
nonsymmetric contributions show up only if one approaches the very edge of the spectral
support, giving the exponentially small deviations from the abrupt behaviour on the border of
the circle. The irreducible part of the two-point correlation function (exponentially decaying
with the distance between the eigenvalues) is fully given by a single replica nonsymmetric
saddle point. In the symplectic case the situation is different. In addition to the symmetric
contribution that is determined to all polynomial orders, the nonsymmetric contribution exists
already on the level of the bulk DoS. It brings an exponentially small correction (not oscillatory
5 In the y → 0 limit, complex conjugate pairs of poles in figure 1 merge at the real axis, so the integration domain
M cannot be deformed to M̃ without picking up the residues. This is the origin of the δ(y) function peak of
the DoS (6).
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as in the case of Dyson ensembles) to the symmetric contribution, which is crucial in making
contact with the exact result. In the orthogonal case, there only exists a single replica-
symmetric saddle point that gives all polynomial orders of the DoS, and the exponential
corrections to the symmetric contribution are absent. One can restore the δ functional peak
from the smooth part of DoS reconstructed by the Borel resummation. The presence/absence
of exponential corrections is a direct consequence of compact/noncompactness of the saddle
point manifold which is the target space of the fermionic/bosonic replicated nonlinear σ
models.

Finally, we list possible lines of future investigation:

• The resemblance generally observed between replicated generating functions (13), (50),
(74) and corresponding DoS (4a), (5), (6), as well as a surprising small-n reduction
(B9) of the former to essentially one-component integrals, makes us speculate that the
replica treatment may be applicable to Ginibre ensembles beyond Borel resummation or
asymptotic analyses (for large symmetry breaking parameters |ω|, y or at large N) and
could indeed produce full exact results. Presumably, it could be done by applying a
complete set of loop equations to the n-fold integrals to reduce them directly to one-fold
integrals6.

• Application to off-diagonal parts of the remaining two Altland–Zirnbauer superconducting
chiral classes [35], i.e. non-Hermitian complex symmetric and complex self-dual matrices
[23], should be interesting in its own right, as analytic results have not yet been obtained
via other methods. It would require appropriate parametrization of the FF or BB blocks
of the Riemannian symmetric superspaces D | C and C | D.

• Starting from Hatano–Nelson disordered Hamiltonian, either with strong or weak non-
Hermiticity [10, 11], one may obtain a finite-dimensional nonlinear σ model of the
corresponding symmetry class. Our formulation and results should serve as a ground
upon which non-Hermitian disordered Hamiltonians in the diffusive regime (with or
without interactions) may be treated.
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Appendix A. Jacobian

In this appendix, we compute a Jacobian associated with parametrization (47) following [32],
section VIIF and appendix A, where the following was proven (Zirnbauer–Haldane): let G be
a Lie group,Ge a subgroup that commutes with s, K another subgroup whose right action on G
leaves a function f of G invariant,A a maximal Abelian subgroup for the Cartan decomposition
of G with respect to K, M a subgroup ofGe∩K that commutes with all elements ofA,andA+ an
open subset of A such that the map φ : (Ge/M)×A+ → G/K, (gM, a) �→ gaK is bijective.
Let dg be a Haar measure on G, dgK a Haar measure onG/K , and da a Euclidean measure on
A. Let T (•) denote a Lie algebra for a Lie group and a tangent space at the origin for a group
quotient. T (G) = T (G/K)⊕ T (K) decomposes into the even (e) and odd (o) elements with
6 Note that in this paper we have not utilized a loop equation at p0 = −1 (the L−1 constraint), which relates an
n-fold integral to an (n− 1)-fold integral arising from the lower end of the partial integration.
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respect to an involuntary automorphism g �→ sgs. As the action of ad(log a), a ∈ A+, maps
T (K)e + T (G/K)o → T (G/K)o + T (K)e and T (K)o + T (G/K)e → T (G/K)e + T (K)o,
the set of positive roots,+ of G decomposes into,+

e and ,+
o accordingly. Then the Jacobian

J (a) associated with the map φ,∫
G/K

f (gK) dgK =
∫
A+

(∫
Ge

f (gaK) dg

)
J (a) da (A1)

is given by

J (a) =
∏
α∈,+

e

sinhα(log a)
∏
α∈,+

o

coshα(log a). (A2)

In the case of fermionic replica for Ginibre symplectic ensemble, we take

G = U(2n) K = O(2n) Ge = U(n)× U(n)
A � a = exp

(
i

2

[
0 Θ
Θ 0

])
=
[

cos(Θ/2) i sin(Θ/2)
i sin(Θ/2) cos(Θ/2)

]

Θ = diag(θa) da =
n∏
a=1

dθa (A3)

f (gK) = exp

(
−y

2

2
Tr ggT s(ggT )−1s

)
(A4)

and identify ggT in equation (A4) with U in equation (45). For g ∈ Ge,
Tr(ga)(ga)T s((ga)(ga)T )−1s = Tr a2sa−2s

= Tr

[
cosΘ i sin Θ
i sin Θ cosΘ

] [
11 0
0 −11

] [
cos Θ −i sin Θ

−i sin Θ cos Θ

] [
11 0
0 −11

]

= 2
n∑
a=1

(
cos2 θa − sin2 θa

)
(A5)

and thus the integration over Ge is trivial. Without loss of generality one may restrict {θ} in
a cell θ1 > θ2 > · · · > θn > 0. The eigensystem of ad(log a)X ≡ [log a,X] = α(log a)X is
given by

Positive Root Eigenvector

α = iθa ∈ ,+
o (a = 1, . . . , n) XAB = δ(+)Aa δ(−)Ba ∈ T (G/K)e + T (K)o

α = i θa ± θb
2

∈
{
,+
o

,+
e

(1 � a < b � n) XAB =
{
δ
(+)
Aa δ

(∓)
Bb + δ(±)Ab δ

(−)
Ba ∈ T (G/K)e + T (K)o

δ
(+)
Aa δ

(∓)
Bb − δ(±)Ab δ

(−)
Ba ∈ T (G/K)o + T (K)e

(A6)

where δ(±)Aa ≡ δAa ± δAa+n. Accordingly,

J (a) da =
n∏
a=1

dθa

n∏
a=1

cos θa

n∏
a<b

(
cos

θa − θb
2

cos
θa + θb

2
sin
θa − θb

2
sin
θa + θb

2

)

=
n∏
a=1

d sin θa

n∏
a>b

(
cos2 θa − cos2 θb

) =
n∏
a=1

d sin θa,(cos2 θ) (A7)

up to an irrelevant positive constant. In a generic cell, one would have

J (a) da =
n∏
a=1

d sin θa|,(cos2 θ)|. (A8)
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Appendix B. Loop equation

In this appendix,we derive loop equations [33] for an (auxiliary) Laguerre orthogonal ensemble
and solve them in the replica limit, as is essential in deriving asymptotic series for the generating
functions [17].

Consider a set of n random non-negative numbers {λa} whose unnormalized joint
probability distribution is given by

dρ(λ) =
n∏
a=1

dλa e−tλa |,(λ)|. (B1)

Let 〈· · ·〉 denote an average with respect to dρ(λ). An expectation value of a product of
elementary symmetric polynomials ωp = ∑

a λ
p
a ,〈

s∏
i=1

ωpi

〉
pi ∈ N

is called a loop amplitude. Loop equations (a.k.a. Virasoro constraints [36]) are derived from
integrals of total derivatives∫ ∞

0

n∏
a=1

dλa

n∑
b=1

∂

∂λb

(
λ
p0+1
b

s∏
i=1

ωpi

n∏
c=1

e−tλc |,(λ)|
)

= 0 (B2)

(pi = 0, 1, . . .). By applying derivatives to each of the factors, one obtains

p0 + 1

2

〈
ωp0

s∏
i=1

ωpi

〉
+

1

2

p0∑
p=0

〈
ωp0−pωp

s∏
i=1

ωpi

〉

+
s∑
i=1

pi

〈
ωp0+pi

s∏
j ( �=i)

ωpj

〉
= t

〈
ωp0+1

s∏
i=1

ωpi

〉
. (B3)

Starting fromω0 = n, this set of loop equations recursively determines whole loop amplitudes.
The first few of them are

〈ω1〉 = n(1 + n)

2t

〈ω2〉 = n(1 + 2n + n2)

2t2〈
ω2

1

〉 = n(2 + 3n + 2n2 + n3)

4t2 (B4)

〈ω3〉 = n(8 + 19n + 16n2 + 5n3)

8t3

〈ω1ω2〉 = n(4 + 9n + 7n2 + 3n3 + n4)

4t3〈
ω3

1

〉 = n(8 + 14n + 13n2 + 9n3 + 3n4 + n5)

8t3
, . . . .

Degree-counting in equation (B3) leads to〈
s∏
i=1

ωpi

〉
= t−

∑s
i=1 pi

(
υp1,...,ps n +O(n2)

)
for pi = 1, 2, . . . . (B5)
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Now we prove a surprisingly simple formula

υp1,...,ps = 1

2

((
s∑
i=1

pi

)
− 1

)
! pi = 1, 2, . . . . (B6)

by induction: equation (B6) holds at degree 1, υ1 = 1/2. Assume that it holds for all loop
amplitudes of total degrees

∑s
i=0 pi = k. An amplitude of the degree k + 1, υp0+1,p1,...,ps

with p0 + 1, p1, . . . , ps � 1 is given as a linear combination of these amplitudes by the loop
equation (B3). If p0 � 1, its LHS gives

υp0+1,p1,...,ps =
(
p0 + 1

2
+
p0 − 1

2
+

s∑
i=1

pi

)
1

2

(
s∑
i=0

pi − 1

)
!

= 1

2

(
s∑
i=0

pi

)
! (B7)

thus equation (B6) also holds for υp0+1,p1,...,ps . If p0 = 0, the first two terms of the LHS of
equation (B3) are of higher orders in n, so one again has

υ1,p1,...,ps =
(

s∑
i=1

pi

)
1

2

(
s∑
i=1

pi − 1

)
! = 1

2

(
s∑
i=1

pi

)
!. (B8)

Therefore equation (B6) holds for any loop amplitude of the total degree k + 1. This ends the
proof. It means that the loop amplitude depends only on the total degree of the symmetric
polynomials in the small-n (replica) limit7,〈

s∏
i=1

ωpi

〉
=
〈
ω
∑s
i=1 pi

1

〉
(1 +O(n)). (B9)

As long as Re t > 0 and Im t < 0, one can rotate the integration contours of λ from [0,∞) to
[0, i∞) without ever modifying the loop equations and violating convergence. This justifies
the transition from equation (53) to equation (54).

Note added in proof. After submission of the original manuscript, we have confirmed that the fermionic replica applied
to the Ginibre orthogonal ensemble does indeed reproduce the asymptotic expansion (79) of the exact result (6).
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[15] Kamenev A and Mézard M 1999 Phys. Rev. B 60 3944
[16] Yurkevich I V and Lerner I V 1999 Phys. Rev. B 60 3955
[17] Dalmazi D and Verbaarschot J J M 2001 Nucl. Phys. B 592 419
[18] Akemann G, Damgaard P H, Dalmazi D and Verbaarschot J J M 2001 Nucl. Phys. B 601 77
[19] Finkel’stein A M 1983 Zh. Eksp. Teor. Fiz. 84 168 (Engl. transl. Sov. Phys.–JETP 57 97 1983)
[20] Gangardt D M and Kamenev A 2001 Nucl. Phys. B 610 578
[21] Zirnbauer M R 1996 J. Phys. A: Math. Gen. 29 7113
[22] Fyodorov Y V 2002 Nucl. Phys. B 621 643
[23] Hastings M B 2001 J. Stat. Phys. 103 903 (Preprint cond-mat/9909234)
[24] Shuryak E V and Verbaarschot J J M 1993 Nucl. Phys. A 560 306
[25] Andreev A V, Simons B D and Taniguchi N 1994 Nucl. Phys. B 432 487
[26] Cavagna A, Giardina I and Parisi G 1998 Phys. Rev. B 57 11251
[27] Verbaarschot J J M and Zirnbauer M R 1985 J. Phys. A: Math. Gen. 18 1093
[28] Forrester P J 1993 Phys. Lett. A 179 127
[29] Duistermaat J J and Heckman G 1982 Invent. Math. 69 259
[30] Zirnbauer M R 1999 Preprint cond-mat/9903338
[31] Halasz M A and Verbaarschot J J M 1995 Phys. Rev. D 52 2563
[32] Zirnbauer M R and Haldane F D M 1995 Phys. Rev. B 52 8729
[33] Migdal A A 1983 Phys. Rep. 102 199
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